Abstract

Pulsed near-infrared radiation has been proposed as an alternative stimulus for auditory nerve stimulation and could be potentially used in the design of cochlear implant. Although the infrared with high absorption coefficient of water (i.e., wavelength ranged from 1.8 to 2.2 μm) has been widely investigated, the lymph in the cochlea absorbs most of the infrared energies, and only a small part can arrive at the target auditory nerves. The present study is aimed to test whether the short-wavelength near-infrared irradiation with lower absorption coefficients can penetrate the lymph fluid to stimulate the auditory nerves. An 808-nm near-infrared laser was chosen to stimulate the auditory nerve in the guinea pig cochlea. The infrared pulse was delivered by an optical fiber that was surgically inserted near the round window membrane and oriented toward the spiral ganglion cells in the basal turn of the cochlea. The 2-Hz infrared pulses were used to stimulate the cochlea before and after the deafness with different pulse durations (100-1,000 μs). Optically evoked compound action potentials (oCAPs) were recorded during the infrared radiation. We successfully recorded oCAPs from both normal hearing animals and deafened animals. The oCAP amplitude increased with the infrared radiation energy. The preliminary experiment suggests that the near-infrared with lower absorption coefficients can effectively pass through the lymph filled in the cochlea and stimulate the auditory nerve. Further studies will optimize the deafness animal model and determine the optimal stimulation parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.