Abstract

The Josephson arbitrary waveform synthesizer (JAWS) is a series array of thousands of superconducting Josephson junctions that are biased by current pulses such that the array produces voltage waveforms with quantum accuracy. Intrinsically accurate voltage waveforms synthesized with the quantized pulses from Josephson junctions were first demonstrated in 1996. Ten years later, a commercial ac standard was calibrated at an output root-mean-square (RMS) amplitude of 100 mV with the first practical superconducting digital-to-analog converter. Since then, many different bias techniques, pulse-drive electronics, and device technology have been developed and improved in order to achieve a maximum of 138 mV output RMS voltage per Josephson array. In this paper, we report new bias electronics and demonstrate two new pulse-bias techniques. The first technique has demonstrated 250 mV output RMS voltage per 6400-junction array and may enable a practical 1 V system with only four arrays. The second bias technique reduces inductance-related error signals at the signal frequency and should reduce systematic errors for waveforms with frequencies greater than 1 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call