Abstract

The exceptional performance of the wireless power transfer (WPT) system hinges on its resonant state. However, the capacitance drift caused by manufacturing tolerance and temperature will result in a state of detuning. In this manuscript, a PWM-controlled switched impedance (PCSI) topology that can express inductive and capacitive is proposed to eliminate line mismatches resulting from the above factors. Firstly, the PCSI topology is introduced, and its placement is determined based on the characteristics of the inductor–capacitor–capacitor series (LCC-S) network. Secondly, the working principle of the proposed topology is introduced. Finally, the simulation and experimental results show that the system could be restored to its resonant state by adjusting the PCSI topology. Under different values of resonant capacitors, the PCSI topology enhances the output power of the system by 40 W~150 W compared to the previous state, and the efficiency is increased by 9~13%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call