Abstract
Cardiovascular disease (CVD) threatens the lives of many and affects their productivity. Wearable sensors can enable continuous monitoring of hemodynamic parameters to improve the diagnosis and management of CVD. Bio-Impedance (Bio-Z) is an effective non-invasive sensor for arterial pulse wave monitoring based on blood volume changes in the artery due to the deep penetration of its current signal inside the tissue. However, the measured data are significantly affected by the placement of electrodes relative to the artery and the electrode configuration. In this work, we created a Bio-Z simulation platform that models the tissue, arterial pulse wave, and Bio-Z sensing configuration using a 3D circuit model based on a time-varying impedance grid. A new method is proposed to accurately simulate the different tissue types such as blood, fat, muscles, and bones in a 3D circuit model in addition to the pulsatile activity of the arteries through a variable impedance model. This circuit model is simulated in SPICE and can be used to guide design decisions (i.e. electrode placement relative to the artery and electrode configuration) to optimize the monitoring of pulse wave prior to experimentation. We present extensive simulations of the arterial pulse waveform for different sensor locations, electrode sizes, current injection frequencies, and artery depths. These simulations are validated by experimental Bio-Z measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.