Abstract

Granular media composed of ordered arrays of discrete spherical granules have attracted considerable attention due to their highly nonlinear and discontinuous dynamics and acoustics that enable passively adaptive and tailorable properties. In this work we numerically study nonlinear pulse propagation in a two-dimensional (2D) granular channel composed of a main homogeneous lattice with several pairs of side granules. Depending on the direction of pulse transmission in the main lattice, a periodic series of symmetry-breaking clearances alter the topology of this 2D granular network. The rotational dynamics of the individual granules, as well as dissipative effects due to friction between granules (and their boundaries) and inherent material damping, are proven to play a significant role in the acoustics of the granular channel. This is demonstrated by comparing the theoretical predictions of this work to experimental measurements of the same system reported earlier. Moreover, the strong nonlinearity of this system in synergy with the topological asymmetry introduced by the clearances passively breaks acoustic reciprocity. To this end, a detailed study of pulse transmission in the 2D granular channel is performed, and it is shown that by simply changing the direction of pulse transmission it is possible to switch the nonlinear acoustics from Nesterenko solitary pulses to strongly decaying propagating pulses. In the latter case there is continuous and irreversible transfer of energy from the main propagating pulse to the side granules, which act, in essence, as nonlinear energy absorbers. This work highlights the important role that (even small) geometric imperfections (asymmetries) may play on the acoustics of 2D granular media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.