Abstract
In this paper, a new method is proposed to design optimized control fields with desired temporal and/or spectral properties. The method is based on penalizing the difference between an optimized field obtained from an iterative scheme and a reference field with desired temporal and/or spectral properties. Compared with the standard optimal control theory, the current method allows a simple, experimentally accessible field be found on the fly; while compared with parameter space searching optimization, the iterative nature of this method allows automatic exploration of the intrinsic mechanism of the population transfer. The method is illustrated by examing the optimal control of vibrational excitation of the Cl-O bond with both temporally and spectrally restricted pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.