Abstract
When optical pulses of temporal width less than or comparable to a detector's response time are used to interferometrically measure intensity-dependent phase shifts, it becomes necessary to use time-averaging protocols to deduce the material nonlinearity. Relations between the actual peak nonlinear phase shifts and the measured values are numerically evaluated for Gaussian and sech square pulse shapes. We believe that these results are also very important to understand the pulse break-up effect in Mach-Zehnder type all-optical switching applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nonlinear Optical Physics & Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.