Abstract

Abstract High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide [NaI(Tl)] and hyperpure germanium as gamma-spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g., 2% @ 662 keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse rise-times, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic rise-time compensation methods. A two-electrode cylindrical high pressure xenon gamma-detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise-time of deposited gamma-photons. Time discrimination was used to character...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.