Abstract

New erasable thermal phase-change superresolution (EPSR) disks composed of mask and recording layers can increase recording density by the detection of the below-diffraction-limited marks within the readout spot. The formation of the aperture and the readout signal on the EPSR disk were analyzed. The feasibility of optically designed EPSR disks was evaluated by thermal simulation. A carrier-to-noise ratio of 32 dB at a mark size of 0.4 mum, 8 dB higher than that of a conventional disk, was obtained by application of a pulse-read method to the EPSR disks at a wavelength of 780 nm and a numerical aperture of 0.55.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.