Abstract

Laser microstructuring has been studied extensively in the last decades due to its versatile, contactless processing and outstanding precision and structure quality on a wide range of materials. A limitation of the approach has been identified in the utilization of high average laser powers, with scanner movement fundamentally limited by laws of inertia. In this work, we apply a nanosecond UV laser working in an intrinsic pulse-on-demand mode, ensuring maximal utilization of the fastest commercially available galvanometric scanners at scanning speeds from 0 to 20 m/s. The effects of high-frequency pulse-on-demand operation were analyzed in terms of processing speeds, ablation efficiency, resulting surface quality, repeatability, and precision of the approach. Additionally, laser pulse duration was varied in single-digit nanosecond pulse durations and applied to high throughput microstructuring. We studied the effects of scanning speed on pulse-on-demand operation, single- and multipass laser percussion drilling performance, surface structuring of sensitive materials, and ablation efficiency for pulse durations in the range of 1–4 ns. We confirmed the pulse-on-demand operation suitability for microstructuring for a range of frequencies from below 1 kHz to 1.0 MHz with 5 ns timing precision and identified the scanners as the limiting factor even at full utilization. The ablation efficiency was improved with longer pulse durations, but structure quality degraded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call