Abstract
A simple but stable noncontact high T/sub c/ superconducting levitation system with a vertical shaft has been presented. The system consists of a superconductor and permanent magnets. In the system, only a high T/sub c/ superconductor supports the lower end of the shaft, and the other end is supported by two ordinary permanent magnets. Since the restoring force is small with respect to the radial direction, the system becomes unstable when the force acts in the radial direction, so it is difficult to drive the shaft by electromagnetic forces when using motors. A driving system using electromagnets has been presented, in which the balanced forces act on two opposite sides of the disc-type rotor in the axial direction. Since the system has no unbalanced force from an analytical point of view, the rotor will be able to rotate without control. In the system, however, since there is eccentricity between the center of rotation and the magnetic center, vibrations are generated. This study also presents an optimal control method for the vibrations. To validate the proposed system and the control method experimental tests have been carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.