Abstract

Interfaces between neighbouring materials are often subjected to diffusion processes which cause layers having gradually varying mechanical properties––like densities, Young's moduli or shear moduli––perpendicular to the surface or interface. In this investigation particular interest is drawn on the question how the propagation characteristics of bulk acoustic waves are affected by diffusion layers. The reflection and transmission behavior of bulk acoustic waves encountering a continuum having a spatially dependent sound velocity is discussed based on numerical simulations as well as on experimental verifications. The simulated results are part of an on-going project in which material properties of MEMS devices are investigated by short pulse laser acoustic methods. Mechanical waves are excited and detected thermoelastically using laser pulses of 70 fs duration. For metals this leads to wavelengths of 10–20 nm and the corresponding frequencies amount to 0.3–0.6 THz. In contrast to previous work done in this field in which diffusion effects are generally considered as undesirable phenomena, the deliberate realization of microstructures having well defined gradually varying material properties in one or more dimensions represents a goal of this investigation. For metallic thin film multilayers thermally induced diffusion processes have shown to be an easy and reliable technique for the realization of layered structures having continuously varying mechanical properties within several 10 nm. Among the experimental methods suitable for the in-depth profiling of submicron metallic thin films providing resolutions of several nanometers, are short pulse laser acoustic methods, Rutherford backscattering spectroscopy (RBS), and glow discharge optical emission spectroscopy (GDOES). Short pulse laser acoustic methods and RBS have the advantage to be nondestructive. The short pulse laser acoustic method is described in detail and RBS measurements are presented for verification purposes. Finally potential engineering applications like micro-machined spectrum analyzers, acoustic isolation layers, and band pass filters, operating at very high frequencies are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.