Abstract

Methane emissions from plants in wetlands are mainly due to internal transport, from the anoxic soil layers where methane is produced, to the atmosphere. This pathway has not yet been clearly demonstrated for upland forest vegetation, where methane can be produced in deep soil layers. We developed a new method to trace methane transfer from the deep soil. We conducted a 13CH4 pulse labelling at 40-cm soil depth and then monitored 13CH4 in the upper horizons, at the soil surface (with or without understorey vegetation) and emitted by tree stems until the total disappearance of the labelled gas. Most of the injected 13CH4 was oxidized in the soil despite high soil water content. The understorey vegetation did not contribute to 13CH4 emission by the soil. We prove that tree stems can emit methane produced in an upland forest soil, even when the said soil is a net methane sink. We conclude that pulse labelling with 13CH4 and tracing by laser-based spectrometry is a promising tool approach to study the transport of methane from production to emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call