Abstract

We demonstrate a new resonance condition that obeys the relation Δδ=nνR/2, where Δδ is the chemical shift difference between two homonuclear-coupled spins, νR is the magic-angle spinning speed and n is an integer. This modulation on the rotational resonance recoupling condition is obtained by the application of rotor-synchronous 1H pulses when at least one proton is dipolar-coupled to one of the homonuclear spins. We suggest a new experimental scheme entitled ‘pulse induced resonance with angular dependent total enhancement’ (PIRATE) that can enhance proton-driven spin diffusion by the application of a single 1H pulse every rotor period. Experimental evidence is demonstrated on the two carbon spins of glycine and on the Y21M mutant of fd bacteriophage virus. Numerical simulations reveal the existence of the resonances and report on the important interactions governing these phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.