Abstract

Phototropisms induced by a pulse (1-30 seconds) of blue light in red-light-grown coleoptiles of oats (Avena sativa L.) and maize (Zea mays L.) were investigated in terms of fluence-response relationships and time courses. Phototropic stimulation was made by a laser beam (457.9 nanometers), allowing application of high-fluence pulses. The phototropic fluence-response curves for oats and maize revealed two peaks in the positive range, thus indicating the occurrence of two separable pulse-induced positive responses. The response at low fluences corresponded to the ;first positive curvature.' The response at high fluences was very small in oats, but was large in maize. Reciprocity was valid in this high-fluence response (tested only for maize), indicating that it is distinct from the so-called ;second positive curvature.' In oats, the trough between the two positive responses fell into the negative range. This negative response, corresponding to the ;first negative curvature,' showed time courses distinct from those of ;first positive curvature:' the negative response was induced after a longer time lag and developed with a more gradual increase of the rate of bending. The maximal rate of the negative response was as high as one-half of that of first positive curvature. In maize, the trough between the two responses was in the positive range, and the time-course result revealed no apparent response counteracting the positive responses. Physiological and ecological implications of the pulse-induced phototropisms are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.