Abstract

Organic-inorganic nanohybrids with nanoscale architectures and electrocatalytic properties are emerging as a new branch of advanced functional materials. Herein, nanohybrid organic-inorganic nanosheets are grown on carbon paper via a pulse-electrochemical deposition technique. A benzo[2,1,3]selenadiazole-5-carbonyl protected dipeptide BSeFL (BSe = benzoselenadiazole; F = phenylalanine; and L = leucine) cross-linked with Ni2+ ions (Ni-BSeFL) and nickel hydroxide (Ni(OH)2) in a BSeFL/Ni(OH)2 electrode exhibits stable electrocatalytic activity toward urea oxidation. The cross-linked nanosheet morphology of nanohybrids was optimized by controlling the reduction potential during pulse electrodeposition. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid deposited at -1.0 V provides abundant active sites of Ni3+ with low charge transfer resistance (RCT) and high exchange current density (J0) at the electrocatalytic interface. The nanohybrids with Ni-BSeFL and Ni(OH)2 show low overpotential and superior stability for electrocatalytic urea electro-oxidation. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid based electrode requires a low potential of 1.30 V (vs. RHE) to acquire a current density of 10 mA cm-2 for the urea oxidation reaction (UOR) in urea containing alkaline solution which is lower than that for water oxidation in alkaline solution (1.49 V vs. RHE). The organic-inorganic nanohybrid BSeFL/Ni(OH)2 (-1.0 V) shows durability over 10 h for oxygen evolution and urea electro-oxidation, thereby confirming the BSeFL/Ni(OH)2 (-1.0 V) nanohybrid-based electrode as an efficient electrocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.