Abstract

The anisotropy of metal crystal surfaces is known to affect the dynamics of travelling concentration wavetrains (including front- and pulse-like waves) observed in heterogeneous catalytic reactions. Motivated by experiments on microdesigned catalyst surfaces we present a computer-assisted study on the stability of pulse-like solutions of reaction–diffusion equations in thin (quasi-one-dimensional) anisotropic media. Results on a period doubling instability of a rotating pulse and on the interaction of two pulses in a system with periodic boundaries are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.