Abstract

Intermodal dispersion properties are compared for high silica fibers with borosilicate (B <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> -SiO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ) and germania borosilicate (GeO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> -B <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> -SiO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ) graded-index profiles. Pulse transmission measurements were systematically correlated with profile shapes so that new fibers could be fabricated with closer-to-optimal profile gradients at a wavelength of 907.5 nanometers. Germania borosilicate fibers with power law profile exponents (α ≈ 2.03) lowered intermodal dispersion 50 times from the result expected for comparable step-index fibers with N.A. ≈ 0.19. By contrast, borosilicate fibers with α ≈ 1.78 caused a 100-fold pulse width reduction in fibers with N.A. ≈ 0.14, corresponding to a 2σ = 0.13 ns/km pulse-broadening rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call