Abstract

Dynamic pulse evolution characteristics of an actively mode-locked laser diode array in the external cavity have been investigated. Numerical calculations based on modified traveling-wave rate equations reproduce experimentally observed pulse and spectral width evolution and show that the buildup time is about 45 round-trips. We have also performed a theoretical analysis to understand which of the laser operating parameters would affect the buildup dynamics. It is shown that either higher dc bias current or larger radiative recombination coefficient (which is inversely proportional to the excited-state lifetime) will render the laser exhibiting shorter steady-state pulse width and faster evolution to the steady state. Other parameters affecting the buildup, but to a lesser extent, include the radio-frequency (RF) modulation current, spontaneous emission coefficient, and gain coefficient. The power reflectivities of the output mirror and the antireflection coated diode facet, on the other hand, have little effect on the pulse width and buildup time for single pulse generation. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.