Abstract

The properties of the damping coefficient and phase velocity of propagation of small-amplitude pressure waves as functions of the oscillation frequency are investigated for the turbulent flow of a weakly compressible fluid in a circular pipe. The wall friction is found by solving numerically the equation of motion and the relaxation equations for the turbulent shear stress and viscosity which provide the basis for a turbulent transfer model developed for unsteady conditions. The properties are explained in terms of an analysis of the calculated data on turbulent transfer. The results obtained are compared with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.