Abstract
In this work, the interactions between the axial translational motions and aspherical oscillations of two gas bubbles in an incompressible liquid are considered. Representing the surface function by the Legendre polynomial of first order, we derive a dynamic model to describe the motions of two aspherical bubbles in Lagrangian mechanics. An apple-shaped bubble from simulations based on the model can be well consistent with known experimental observation. The bubble appears as the shape of a sphere at maximum expansion. The maximum asymmetry of the bubbles occurs during collapse. The surface tension is a key factor to stable oscillatory deformation. It is also found that the aspherical amplitudes of two bubbles decrease with increasing distance or decreasing driving pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.