Abstract

Gas pulsations excited by reciprocating compressors could introduce severe vibrations and noise in piping systems. When pulsating gas flows through the reducers, the changes in flow characteristics, such as velocity and damping coefficient, will affect the pressure pulsations. To circumvent these constraints, a two-tank element is introduced to control the gas pulsation that is still strong in the piping system with a surge tank. Installing another surge tank to form a two-tank element is more flexible and costs lower than replacing the original surge tank with a larger one. In this work, a theoretical model based on the wave theory was proposed to study the transferring mechanism of gas pulsations in the pipeline with the two-tank element. By considering the damping coefficient and the Mach number, the distributions of the pressure pulsations were predicted by the theoretical model and agreed with the three-dimensional fluid dynamics transient analysis. Three experiments were conducted to prove that the suppression capability of the two-tank element is as good as that of a single-tank element (surge tank) with the same surge volume. The volume optimization of the two-tank element is implemented by selecting the best allocations of the two tanks’ volumes to achieve larger reductions of pressure pulsations. Assuming that the total surge volume is constant, we found that the smaller the volume of the front tank (near the cylinder) is, the lower the pulsation levels are. The optimized result proves that in some conditions the two-tank element could control pulsations better than the single-tank element with the same surge volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.