Abstract

The present study is focused on the disintegration effect of ultrasound-enhanced pulsating water jet (PWJ) technology on brass CW614N. The first part of the study discusses the effect of a combination of factors based on the full factorial design of experiments (DoE) 33. Traverse speed v (mm s−1), circular nozzle orifice diameter d (mm), and hydraulic power P h (kW) are selected as the disintegration variable factors. Mass material removal Δm (mg s−1) is evaluated based on the change in these variable factors. In the next part, a verification experiment is performed with by varying the traverse speed between 0.2 and 1.4 mm s−1. The mathematical model calculated in DoE is confirmed. Moreover, the significant effect of hydraulic power P h (kW) on the efficiency of the PWJ disintegration is demonstrated. The last part of the study discusses the surface and subsurface effects on a PWJ after brass CW614A erosion. A sample disintegration with hydraulic power P h = 13 kW and circular nozzle diameter d = 1.321 mm is observed. Optical profilometry and scanning electron microscopy are performed to visualise the surface erosion of a selected groove. A significant mass material removal is observed from the groove surface, and the disintegrated surface is characterised by erosion and crater formation. A slight cold deformation with a maximum depth of 200 μm is detected in the subsurface layer. The experiment and results present a part of an extensive research focused on describing the PWJ disintegration efficiency for metallic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.