Abstract

The stability of a magnetic deflagration front in a media of molecular magnets, such as ${\mathrm{Mn}}_{12}$ acetate, is considered. It is demonstrated that stationary deflagration is unstable with respect to one-dimensional perturbations if the energy barrier of the magnets is sufficiently high in comparison with the release of Zeeman energy at the front; their ratio may be interpreted as an analog to the Zeldovich number, as found in problems of combustion. When the Zeldovich number exceeds a certain critical value, a stationary deflagration front becomes unstable and propagates in a pulsating regime. Analytical estimates for the critical Zeldovich number are obtained. The linear stage of the instability is investigated numerically by solving the eigenvalue problem. The nonlinear stage is studied using direct numerical simulations. The parameter domain required for experimental observations of the pulsating regime is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.