Abstract

Flame propagation in channels and cracks is a problem of considerable interest with applications in many practical combustion devices, in fire hazard scenarios, and in the emerging micropropulsion technologies. Understanding the dynamics and stability characteristics of flame propagation in channels is, therefore, important both for fundamental research as well as for practical applications. In this work, we examine the propagation of a premixed flame front in a two-dimensional channel in the presence of a Poiseuille flow. Our primary objective is to determine within the flammable regions the structure of the flame front and the conditions that result in steady propagation and those leading to a pulsating mode of propagation. Special attention is given to the difference between propagation in narrow and wide channels, heat losses to the channel’s walls, and an imposed flow that either supports or opposes the propagation. In general, flame oscillations are found to occur in mixtures for which the effective Lewis number is sufficiently large. They are more likely to occur in narrow or wide channels and particularly at near-extinction conditions where the critical Lewis number is reduced to physically accessible values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.