Abstract

We have performed a spectral analysis of the quasi-periodic low-frequency modulation of microwave emission from a flare on the star AD Leo. We used the observations of the May 19, 1997 flare in the frequency range 4.5–5.1 GHz with a total duration of the burst phase of about 50 s obtained in Effelsberg with a time resolution of 1 ms. The time profile of the radio emission was analyzed by using the Wigner-Ville transformation, which yielded the dynamic spectrum of low-frequency pulsations with a satisfactory frequency-time resolution. In addition to the noise component, two regular components were found to be present in the low-frequency modulation spectrum of the stellar radio emission: a quasi-periodic component whose frequency smoothly decreased during the flare from ∼2 to ∼0.2 Hz and a periodic sequence of pulses with a repetition rate of about 2 Hz, which was approximately constant during the flare. We consider the possibility of the combined effect of MHD and LCR oscillations of the radio source on the particle acceleration in the stellar atmosphere and give estimates of the source’s parameters that follow from an analysis of the low-frequency modulation spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call