Abstract

The contact line dynamics over surfaces patterned with wettability gradients under pulsating flow condition are of essential importance in application areas ranging from the design of smart and effective microfluidic devices to the understanding of blood flow dynamics in narrow conduits. In the present study, we probe the capillary filling dynamics in a pulsatile flow environment, in an effort to explore the underlying flow physics. Presenting the results of frequency assisted contact line motion of two immiscible fluids over surfaces patterned with wettability gradients, we show how the interfacial dynamics are affected by the interplay of both the surface characteristics and flow pulsation. Our results reveal that the competition between two control parameters, the frequency and the amplitude of the imposed flow pulsation, may effectively be tuned to control the capillary filling dynamics significantly. The study, we present here, also suggests that by suitably tuning the control parameters, it is possible to control the capillary residence time over engineered locations which may, in turn, facilitate improved mixing and/or design of chemically active reaction stations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.