Abstract

A numerical study has been undertaken to analyze the flow and thermal characteristics of forced pulsating flow through a channel with two porous-covering heated blocks in tandem. Solution of the coupled governing equations for the fluid/porous/solid composite system is obtained by utilizing a control-volume method through the use of a stream function-vorticity approach. This study details the effects of variations in the Darcy number, pulsation frequency and amplitude, three pertinent geometric parameters and effective conductivity ratio, to illustrate important fundamental and practical results. The results show that the periodic alteration in the structure of recirculation flow inside the inter-block region and behind the downstream block significantly enhances the heat transfer rate on the block right faces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call