Abstract
In this paper, the pulsatile coupled vibrations of a viscoelastic microtube conveying pulsatile fluid is examined for the first time. The problem is grouped into the class of parametrically excited, internally damped, gyroscopic where both Coriolis and parametric forces are present in the presence of viscosity. The Kelvin–Voigt approach of the viscosity, the Euler–Bernoulli for the deformation, the modified couple stress theory for the small size, and Hamilton’s principle for deriving differential equations are used. Parametric frequency–response curves are obtained in the vicinity of the parametric resonance near the critical speed for both subcritical and supercritical regimes. The effect of the flow pulsation on the oscillations is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.