Abstract
To study the mechanism of LH-releasing hormone (LHRH) pulse generation, the olfactory pit/placode and the migratory pathway of LHRH neurons from monkey embryos at embryonic age 35-37 were dissected out, under the microscope, and cultured on plastic coverslips coated with collagen in a defined medium for 2-5 weeks. First, we examined whether cultured neurons release the decapeptide into media. It was found that LHRH cells release LHRH in a pulsatile manner at approximately 50-min intervals. Further, LHRH release was stimulated by depolarization with high K+ and the Na+ channel opener, veratridine. However, whereas the Na+ channel blocker, tetrodotoxin suppressed the effects of veratridine, tetrodotoxin did not alter the effects of high K+. Subsequently, the role of extracellular and intracellular Ca2+ in LHRH release was examined. The results are summarized as follows: 1) exposing the cells to a low Ca2+ (20 nM) buffer solution suppressed LHRH release, whereas exposure to a normal Ca2+ solution (1.25 mM) maintained pulsatile LHRH release; 2) LHRH release from cultured LHRH cells was stimulated by the voltage-sensitive L-type Ca2+ channel agonist, Bay K 8644 (10 microM), whereas it was suppressed by the L-type Ca2+ channel blocker, nifedipine (1 microM), but not by the N-type channel blocker, omega-conotoxin GVIA (1 microM); 3) the intracellular Ca2+ stimulant, ryanodine (1 microM), stimulated LHRH release, whereas the intracellular Ca2+ transporting adenosine triphosphatase antagonist, thapsigargin (1 and 10 microM), did not yield consistent results; and 4) carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone (1 microM), a mitochondrial Ca2+ mobilizer, stimulated LHRH release, whereas ruthenium red, a mitochondrial Ca2+ uptake inhibitor, did not induce consistent results. These results indicate that: 1) the presence of extracellular Ca2+ is essential for LHRH neurosecretion; 2) Ca2+ enters the cell via L-type channels but not N-type channels; and 3) mobilization of intracellular Ca2+ from inositol 1,4,5-triphosphate-sensitive stores, as well as mitochondrial stores, seem to contribute to LHRH release in these cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.