Abstract

BackgroundLeft ventricular (LV) afterload is composed of systemic vascular resistance (SVR) and components of pulsatile load, including total arterial compliance (TAC), and reflection magnitude (RM). RM, which affects the LV systolic loading sequence, has been shown to strongly predict HF. Effective arterial elastance (Ea) is a commonly used parameter initially proposed to be a lumped index of resistive and pulsatile afterload. We sought to assess how various LV afterload parameters predict heart failure (HF) risk and whether RM predicts HF independently from subclinical atherosclerosis. MethodsWe studied 4345 MESA participants who underwent radial arterial tonometry and cardiac output (CO) measurements with the use of cardiac MRI. RM was computed as the ratio of the backward (Pb) to forward (Pf) waves. TAC was approximated as the ratio of stroke volume (SV) to central pulse pressure. SVR was computed as mean pressure/CO. Ea was computed as central end-systolic pressure/SV. ResultsDuring 10.3 years of follow-up, 91 definite HF events occurred. SVR (P = .74), TAC (P = .81), and Ea (P = .81) were not predictive of HF risk. RM was associated with increased HF risk, even after adjustment for other parameters of arterial load, various confounders, and markers of subclinical atherosclerosis (standardized hazard ratio [HR] 1.49, 95% confidence interval [CI] 1.18–1.88; P = .001). Pb was also associated with an increased risk of HF after adjustment for Pf (standardized HR 1.43, 95% CI 1.17–1.75; P = .001). ConclusionsRM is an important independent predictor of HF risk, whereas TAC, SVR, and Ea are not. Our findings support the importance of the systolic LV loading sequence on HF risk, independently from subclinical atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.