Abstract

Previous studies have indicated a correlation between local variation in wall shear stress in arterial blood flow and atheroma development. The purpose of this study was to analyze the hemodynamics in vascular segments from morphologically realistic three-dimensional (3D) reconstruction, and to compare the computed wall shear stress in a compliant vascular segment model and the corresponding rigid walled model. Cross-sectional images of the segments of femoral and carotid arteries in five Yucatan miniswine were obtained using intravascular ultrasound (IVUS) imaging and the segment geometry was reconstructed at different times in the cardiac cycle. The actual measured wall motion from the reconstruction was employed to specify the moving boundaries for simulation of physiological distensibility. Velocity profiles and wall shear stress were computed using unsteady computational fluid dynamics analysis. The computed results revealed that the maximum wall shear stress in the compliant model was approximately 4–17 percent less than that in the rigid model if the wall motion is larger than 10 percent. Our analysis demonstrates that inaccuracies due to inflow velocity profile can be minimized by the extension of the model upstream. The phase angle between the diameter change and wall shear is affected by the local changes in geometry of the arteries. These simulations can be potentially used to analyze the effect of regional wall motion changes in the presence of atherosclerotic lesions on the local fluid dynamics and to correlate the same with subsequent growth of the lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call