Abstract
In-vitro cardiovascular experiments provide an effective means for characterizing structural or hemodynamic features of medical devices before they are tested on animals or used in clinical practice. In-vitro experiments simulate complicated cardiovascular systems with blood pumps, vessels and valves, but without human or animal subjects. Therefore, such experiments are free from ethical issues and present large cost savings in comparison to in-vivo experiments. In this study, we aimed to design a fully programmable pulsatile flow pump that can consistently and accurately reproduce a wide range of physiological flow waveforms without costly transient flowmeter in the system. An iterative control algorithm (ICA) was used to minimize the differences between the desired and produced flow waveforms. Our results confirm that the developed pulsatile pump can replicate flow waveforms accurately, with root mean square errors (RMSEs) of 0.64 L/min and 0.52 mL for the flow rate and stroke volume, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.