Abstract
We study the unsteady pulsatile flow of blood in an artery, where the effects of body acceleration are included. The blood is modeled as a modified second-grade fluid where the viscosity and the normal stress coefficients depend on the shear rate. It is assumed that the blood near the wall behaves as a Newtonian fluid, and in the core as a non-Newtonian fluid. This phenomenon is also known as the Fahraeus–Lindqvist effect. The equations are made dimensionless and solved numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.