Abstract

Teaching traditionally asserts that the arterial pressure pulse is dampened across the capillary bed to the extent that pulsatility is nonexistent in the venous circulation of the lower limbs. Herein, we present evidence of transmission of arterial pulsations across the capillary network into perforator veins in the lower limbs of healthy, heat-stressed humans. Perforator veins are connections from the superficial veins that drain into the deep veins. When assessed using ultrasound at rest, they infrequently demonstrate flow, and a pulsatile flow waveform is not described. We investigated perforator vein pulsatility in 10 young, healthy volunteers who underwent passive heating by +2°C core body temperature via a hot-water-perfused suit, and 5 who also underwent active heating by +2°C via low-intensity cycling while wearing the hot-water-perfused suit. At +0.5°C increments in temperature, blood velocity in an ankle perforator vein was measured using duplex ultrasound. In all perforators with heating, sustained flow was demonstrated, with a pulsatile waveform that was synchronous with the cardiac cycle. The maximum velocity was 30 ± 13 cm/s with passive heating and approximately half with active heating (P = 0.04). The small veins of the skin at the ankle also demonstrated increased perfusion with pulsatility, seen with low-velocity microvascular imaging technology. We consider explanations for this pulsatility and conclude that it is propagated from the arterial inflow through the skin microcirculation as a result of increased dilatation and flow volume and that this is a normal response to increased skin blood flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.