Abstract

The purpose of this study was to examine critically the theoretical equations derived for pulsatile laminar flow in rigid straight tubes. These equations, presented in their most useful form by J. R. Womersley in 1955, give the fluid flow rate as a function of the pressure gradient-time relationship, pulse frequency, fluid properties, and tube radius, and they give the fluid velocity as a function of the above quantities and the radial position in the tube. A pulsatile flow apparatus was constructed which would allow measurement of all the variables mentioned above, and a computer program based on Womersley's equations was used to calculate the fluid flow rate and velocity profile from the pressure gradient-time relationship, fluid properties, and tube radius. Thus a comparison between measured and calculated values of flow and velocity could be made. Calculations and data agree within the estimated experimental error, thus providing evidence of the applicability of the theoretical equations to actual flow with large pulse amplitudes. The analog computer “pressure gradient technique” of D. Fry and associates was compared with the exact solution for straight rigid tubes and found to deviate less than 20% in amplitude and phase except at very low frequencies. hydrodynamics, pulsatile flow; blood flow, arterial; hemodynamics, pulse characteristics Submitted on April 6, 1964

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.