Abstract
This work focuses on the interaction of peristaltic with the induced periodic flow of Walters B liquid in a channel with porous space. The model takes into account the impact of Hall current. In order to solve the governing flow equations, the amplitude ratio (wave amplitude/channel width) is used as a parameter in the perturbation technique. The impact related to various parameters on the velocity distribution, stress at the walls and streamline patterns have been examined using graphical representation. Our analysis indicates that with a rise of the Hall current parameter, the velocity of the fluid enhances whereas by rising the Hartmann number, we observed a fall in the velocity. Further, the size of the trapping bolus grows with the rise of the Hall parameter and Reynolds number. The size of the bolus, on the other hand, decreases as the viscoelastic parameter rises. To validate the model, the analytical solution derived has been compared with that of Afifi and Gad (Acta Mechanica 149, 229–237 (2001)), and the outcomes show remarkable agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.