Abstract

Abstract We estimate the merger timescale of spectroscopically selected, subparsec supermassive black hole binary (SMBHB) candidates by comparing their expected contribution to the gravitational-wave background (GWB) with the sensitivity of current pulsar timing array (PTA) experiments and in particular, with the latest upper limit placed by the North American Nanohertz Observatory for Gravitational Waves. We find that the average timescale to coalescence of such SMBHBs is yr, assuming that their orbital evolution in the PTA frequency band is driven by emission of gravitational waves. If some fraction of SMBHBs do not reside in spectroscopically detected active galaxies, and their incidence in active and inactive galaxies is similar, then the merger timescale could be ∼10 times longer, yr. These limits are consistent with the range of timescales predicted by theoretical models and imply that all the SMBHB candidates in our spectroscopic sample could be binaries without violating the observational constraints on the GWB. This result illustrates the power of the multimessenger approach, facilitated by the PTAs, in providing an independent statistical test of the nature of SMBHB candidates discovered in electromagnetic searches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call