Abstract

It is proposed that radiation belts similar to the ones in the planetary magnetosphere can exist for a pulsar with a relatively long period and a strong magnetic field. In the belts located in the closed field line region near the light cylinder relativistic pairs are trapped and maintained at a density substantially higher than the local Goldreich–Julian corotation density. The trapped plasma can be supplied and replenished by either direct injection of relativistic pairs from acceleration of externally supplied particles in a dormant outer gap or in situ ionization of the accreted neutral material in the trapping region. The radiation belts can be disrupted by waves that are excited in the region as the result of plasma instabilities or emitted from the surface due to starquakes or stellar oscillations. The disruption can cause an intermittent particle precipitation towards the star producing radio bursts. It is suggested that such bursts may be seen as rotating radio transients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.