Abstract

Abstract Based on the loss model of pulp pump set up in the I part of this research, an efficient designing method is proposed by taking account of the influences of head reduction by small blade number, leakage loss via tip clearance, and erosion-corrosion wears in pumps separately. Further, a two-stage optimal designing approach was proposed to tackle the oversized design. The pump designing was performed by coupling with a CFD-based optimization procedure. An efficiency increase of near 10 % was achieved on the pump model validated in laboratory. It was proved that performance could be improved by increasing the impeller blade width and enlarging the impeller blade outlet angle. It was further shown that the erosion-corrosion wear in pulp pump was relatively lighter when compared to particle-impingement wear in slurry and sewage pump. Adoption of composite material showed potential in energy-saving in the pumping system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call