Abstract

Sedimentary diatom frustules and chironomid remains, in addition to the chemical stratigraphy of 32 elements and resin acids, were studied from short-core samples taken from two basins and a sheltered bay of Lake Paijanne in southern Finland (about 61 °10′–62 °15′ N, 25 °30′ E). The lake was formerly oligotrophic but has been subject to effluent loading from pulp and paper mills during the past century since the opening of the first pulp mill in the 1880s. Four developmental phases were distinguished and named mainly according to the effects found in the basin close to the pollution source: (1) the pre-industrial phase (from the 1800s to ca. 1920), including the early years of industrialization, with low impacts; (2) the phase of increasing pollution (ca. 1920–1969); (3) the phase of severe pollution (1970–1981); and (4) the water protection phase (1982 onwards). Distinct differences were observed between pelagic (diatoms) and benthic (chironomid) ecosystems in their response to pollution. Effluent loading from the pulp and paper mills had a pronounced impact on chironomid assemblages, but only a slight influence on diatoms in the basin close to the pollution source. In the southern basin, approximately 60 km downstream, an increase in acidophilous species was observed in the diatom assemblages during the early years of pollution, but changes in chironomids in this basin were negligible. The water protection work of the past 30 years, which has led to an improvement in water quality and a marked recovery of the profundal biota, has also resulted in a slight increase in primary production of the lake. The decrease in brown-coloured effluent water has led to an increase in thickness of the lake's photic productive layer, while the toxicity of the water has simultaneously diminished. Rapid changes in chironomid assemblages and sedimentation observed in the sheltered bay highlight the importance of local land-use activities as causes of environmental change in this area, and especially their effects on sedimentation and benthic life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.