Abstract

Because questions have arisen regarding pulmonary vascular permeability and resistance measurements in isolated, perfused lungs, we sought to determine the 1) stability of repeated measurements of permeability and resistance in control lungs; and 2) magnitude of change in these measurements when permeability was greatly increased. Using blood-perfused dog lungs, we measured filtration coefficient (Kf) and isogravimetric capillary pressure (Pci) as indexes of vascular permeability, and we also determined total vascular resistance (Rt) as well as the segmental resistances using the double-occlusion pressure (Pdo). In a control group (n = 8), the base-line measurement of Kf (0.21 +/- 0.02 ml.min-1.cmH2O-1.100 g-1) and Pci (10.2 +/- 0.9 cmH2O) did not change over 4 h, indicating no changes in endothelial barrier function. Base-line Rt (13.9 +/- 2.6 cmH2O.l-1.min.100 g) also did not significantly increase. In a second group (n = 5), alpha-naphthylthiourea (ANTU) increased the initial Kf more than eight times (from 0.17 +/- 0.03 to 1.40 +/- 0.32 ml.min-1.cmH2O-1.100 g-1) and decreased Pci by 56% (from 9.4 +/- 0.6 to 4.1 +/- 0.4 cmH2O) at 1 h, indicating severely damaged endothelium. In addition, the Pdo determined during isogravimetric conditions correlated very well with Pci not only in control lungs (observed previously) but also in very permeable lungs (not previously reported). We conclude that this experimental model provides an excellent means of assessing changes in pulmonary microvascular permeability, with a spectrum ranging from no changes in hourly measurements for 4 h to obvious changes in permeability by 1 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.