Abstract

The aim of this study was to examine the role of cyclooxygenase-2 (COX-2) and downstream signaling of prostanoids in the pathogenesis of pulmonary hypertension (PH) using mice with genetically manipulated COX-2 expression. COX-2 knockdown (KD) mice, characterized by 80–90% suppression of COX-2, and wild-type (WT) control mice were treated weekly with monocrotaline (MCT) over 10 weeks. Mice were examined for cardiac hypertrophy/function and right ventricular pressure. Lung histopathological analysis was performed and various assays were carried out to examine oxidative stress, as well as gene, protein, cytokine and prostanoid expression. We found that MCT increased right ventricular systolic and pulmonary arterial pressures in comparison to saline-treated mice, with no evidence of cardiac remodeling. Gene expression of endothelin receptor A and thromboxane synthesis, regulators of vasoconstriction, were increased in MCT-treated lungs. Bronchoalveolar lavage fluid and lung sections demonstrated mild inflammation and perivascular edema but activation of inflammatory cells was not predominant under the experimental conditions. Heme oxygenase-1 (HO-1) expression and indicators of oxidative stress in lungs were significantly increased, especially in COX-2 KD MCT-treated mice. Gene expression of NOX-4, but not NOX-2, two NADPH oxidase subunits crucial for superoxide generation, was induced by ∼4-fold in both groups of mice by MCT. Vasodilatory and anti-aggregatory prostacyclin was reduced by ∼85% only in MCT-treated COX-2 KD mice. This study suggests that increased oxidative stress-derived endothelial dysfunction, vasoconstriction and mild inflammation, exacerbated by the lack of COX-2, contribute to the pathogenesis of early stages of PH when mild hemodynamic changes are evident and not yet accompanied by vascular and cardiac remodeling.

Highlights

  • Prostacyclin (PGI2) is a potent vasodilator and platelet inhibitor produced in blood vessels by the enzymatic activity of cyclooxygenases (COX-1 and COX-2) and prostacyclin synthase (PGIS) [1]

  • Since studies on animal models of pulmonary hypertension (PH) and humans suggest that inflammation may play an important role in the pathogenesis of PH, we investigated the expression of several inflammatory genes and cytokines in whole lung homogenates, bronchoalveolar lavage (BAL) fluid and plasma collected at study endpoint

  • In the attempt to identify the molecular mechanisms contributing to MCT-induced PH, we analyzed lung and heart samples from WT and COX-2 KD at study end point (10 wk), when hemodynamic changes in right ventricular systolic pressure (RVSP) and pulmonary arterial pressures, were evident but rather modest

Read more

Summary

Introduction

Prostacyclin (PGI2) is a potent vasodilator and platelet inhibitor produced in blood vessels by the enzymatic activity of cyclooxygenases (COX-1 and COX-2) and prostacyclin synthase (PGIS) [1]. A disrupted interplay between PGI2 and TXA2 levels has been implicated in the pathogenesis of pulmonary hypertension (PH), a severe condition characterized by irreversible remodeling of pulmonary resistive vessels, increased pulmonary vascular tone and in situ thrombosis [4,5,6]. A direct vasodilatory effect on pulmonary vasculature, modulation of arterial thrombosis and inhibition of vascular remodeling, can all account for these beneficial effects [12]. COX-1 inhibitors or TXA2 receptor antagonists improve PH only partially since other mechanisms of platelet aggregation, via ADP, collagen, serotonin and thrombin, may sustain intra-pulmonary arterial thrombosis and progression of the disease, even in settings of profound TXA2 inhibition [13]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.