Abstract
ABSTRACT Measurements of pulmonary mechanics on anaesthetized specimens of the aquatic turtle Pseudemys scripta (Schoepff) indicate that the static pulmonary mechanics of the total respiratory system are determined primarily by the mechanics of the body wall rather than those of the lungs. This is also true under the dynamic conditions of pump ventilation at low pump frequencies. As pump frequency increases, the work required to inflate the multicameral lungs of the turtle begins to contribute an increasing portion to the total mechanical work required to produce each breath as measured from pressure volume loops. The rise in the work performed on the lungs results from an increase in the non-elastic, flow-resistive forces which must be overcome during ventilation. The primary bronchus to each lung is the most likely site of flow resistance. There is also a small elastic component to the work required to ventilate the lungs associated with movement of the intrapulmonary septa and the striated muscle surrounding the lungs. The contribution of the work required to distend the body cavity as a percentage of the total mechanical work required to generate each breath remains relatively unchanged with increasing ventilation frequency, indicating that the majority of the forces to be overcome in the body wall are elastic in nature. For a constant rate of minute pump ventilation, as frequency increases, the work done per minute to overcome elastic forces decreases, while that done to overcome non-elastic forces begins to rise. These opposing trends produce an optimum combination of pump volume and frequency at which the rate of mechanical work is minimum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.