Abstract

The identification of spray-drying processing parameters capable of producing particles suitable for pulmonary inhalation with retained bioactivity underpins the development of inhalable biotherapeutics. Effective delivery of biopharmaceuticals via pulmonary delivery routes such as dry powder inhalation (DPI) requires developing techniques that engineer particles to well-defined target profiles while simultaneously minimising protein denaturation. This study examines the simultaneous effects of atomisation gas flow rate on particle properties and retained bioactivity for the model biopharmaceutical lysozyme. The results show that optimising the interplay between atomisation gas flow rate and excipient concentration enables the production of free-flowing powder with retained bioactivity approaching 100%, moisture content below 4%, and D50 < 4 µm, at yields exceeding 50%. The developed methodologies inform the future design of protein-specific spray-drying parameters for inhalable biotherapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.