Abstract
Although fetal breathing movements are required for normal lung development, there is uncertainty concerning the specific effect of absent fetal breathing movements on pulmonary cell maturation. We set out to evaluate pulmonary development in a genetically defined mouse model, the myogenin null mouse, in which there is a lack of normal skeletal muscle fibers and thus skeletal muscle movements are absent in utero. Significant decreases were observed in lung:body weight ratio and lung total DNA at embryonic days (E)14, E17, and E20. Reverse transcriptase/polymerase chain reaction, in situ immunofluorescence, and electron microscopy revealed early lung cell differentiation in both null and wild-type lungs as early as E14. However at E14, myogenin null lungs had decreased 5'-bromo-2-deoxyuridine incorporation compared with that of wild-type littermates, whereas at E17 and E20, increased Bax immunolabeling and terminal deoxyribonucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining were detected in the myogenin null mice but not in the wild-type littermates. These observations highlight the importance of skeletal muscle contractile activity in utero for normal lung organogenesis. Null mice lacking the muscle-specific transcription factor myogenin exhibit a secondary effect on lung development such that decreased lung cell proliferation and increased programmed cell death are associated with lung hypoplasia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of respiratory cell and molecular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.