Abstract

Nanoparticles possess a number of useful properties that make them useful for a variety of industrial and commercial applications. The small size of nanoparticles means that they are respirable and can penetrate deep into the lung when inhaled. Because of this, there is interest in assessing possible toxic effects of nanoparticles on the respiratory system. Measurement of respiratory mechanics and pulmonary function represents a sensitive way of detecting pathological effects of inhaled substances on the lungs. Here we describe a procedure for conducting pulmonary function measurements in mice using the forced oscillation technique. Measurements of baseline lung mechanics are conducted in anesthetized, mechanically ventilated mice, followed by repeated measurements subsequent to inhalation challenge with aerosolized methacholine. General guidelines for data analysis are provided, and sample results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.