Abstract

BackgroundThe PD-1/PD-L1 pathway is an inhibitory signaling pathway that maintains the balance between the immune response and immunotolerance, and its overactivation in cancer and viral infections inhibits T cell function. The target cells of various viruses, microvascular endothelial cells (MECs) have been shown to be key regulatory points in immune regulation and virion diffusion in vivo during infection with multiple influenza virus subtypes. Furthermore, avian influenza virus (AIV) infection can induce immunosuppression by causing imbalances in immune responses and immune organ damage. Thus, the aim of this study was to investigate whether the H9N2 virus inhibited the immune function of T cells that migrated across MECs by upregulating PD-L1 expression on MECs.MethodsThe susceptibility of rat pulmonary microvascular endothelial cells (RPMECs) to the H9N2 virus was evaluated by a plaque-forming assay and immunofluorescence staining. Then, we quantified the mRNA and protein levels of PD-L1 in RPMECs induced by H9N2 virus infection using quantitative real-time PCR and flow cytometry. The interaction between the activated T cells and RPMECs infected with the H9N2 virus was revealed using a coculture system. The effect of endothelial-derived PD-L1 on T cell function was investigated by using ELISA and flow cytometry with or without a PD-L1-specific antibody.ResultsSurface staining and the plaque-forming assay showed that the H9N2 virus infected and replicated in RPMECs. Both the PD-L1 mRNA level and PD-L1 protein level were upregulated in RPMECs infected with the H9N2 virus. H9N2 virus-induced PD-L1 expression significantly reduced the secretions of IL-2, IFN-γ and granzyme B and perforin expression in T cells. The above data were significantly increased after treatment with an anti-PD-L1 antibody, confirming the above mentioned findings. In addition, the induction of PD-L1 expression decreased the proliferative capacity of the cocultured T cells but did not affect the apoptosis rate of T cells.ConclusionsTaken together, the results suggest that the H9N2 virus is able to inhibit the T cell immune response by upregulating PD-L1 expression in pulmonary microvascular endothelial cells.

Highlights

  • The PD-1/Programmed death ligand 1 (PD-L1) pathway is an inhibitory signaling pathway that maintains the balance between the immune response and immunotolerance, and its overactivation in cancer and viral infections inhibits T cell function

  • These results suggest that rat pulmonary microvascular endothelial cells (RPMECs) facilitate H9N2 virus proliferation in the presence of exogenous trypsin

  • H9N2 infection upregulates PD-L1 expression in RPMECs PD-L1 mRNA and protein levels in the differentially treated RPMECs were detected by RT-PCR and flow cytometry

Read more

Summary

Introduction

The PD-1/PD-L1 pathway is an inhibitory signaling pathway that maintains the balance between the immune response and immunotolerance, and its overactivation in cancer and viral infections inhibits T cell function. The target cells of various viruses, microvascular endothelial cells (MECs) have been shown to be key regulatory points in immune regulation and virion diffusion in vivo during infection with multiple influenza virus subtypes. Studies have shown that ECs are the key regulators of the immune response and virion diffusion during infection with multiple subtypes of the influenza virus [16, 17]. It is still unclear whether ECs infected by the H9N2 virus affect the T cell immune response, especially in terms of the production of antiviral and cytotoxic proteins. The aims of this study were to investigate whether the H9N2 virus infected primary pulmonary microvascular ECs (PMECs) and whether it could induce PD-L1 expression in PMECs, thereby affecting the immune function of T cells

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.