Abstract
Many inhaled drugs are poorly water soluble, and the dissolution rate is often the rate-limiting step in the overall absorption process. To improve understanding of pulmonary drug dissolution, four poorly soluble inhalation compounds (AZD5423 (a developmental nonsteroidal glucocorticoid), budesonide, fluticasone furoate (FF), and fluticasone propionate (FP)) were administered as suspensions or dry powders to the well-established isolated perfused rat lung (IPL) model. Two particle size distributions (d50 = 1.2 μm and d50 = 2.8 μm) were investigated for AZD5423. The pulmonary absorption rates of the drugs from the suspensions and dry powders were compared with historical absorption data for solutions to improve understanding of the effects of dissolution on the overall pulmonary absorption process for poorly soluble inhaled drugs. A physiologically based biopharmaceutical in silico model was used to analyze the experimental IPL data and to estimate a dissolution parameter ( kexvivo). A similar in silico approach was applied to in vitro dissolution data from the literature to obtain an in vitro dissolution parameter ( kinvitro). When FF, FP, and the larger particles of AZD5423 were administered as suspensions, drug dissolution was the rate-limiting step in the overall absorption process. However, this was not the case for budesonide, which has the highest aqueous solubility (61 μM), and the smaller particles of AZD5423, probably because of the increased surface area available for dissolution (d50 = 1.2 μm). The estimated dissolution parameters were ranked in accordance with the solubility of the drugs, and there was good agreement between kexvivo and kinvitro. The dry powders of all the compounds were absorbed more slowly than the suspensions, indicating that wetting is an important parameter for the dissolution of dry powders. A wetting factor was introduced to the in silico model to explain the difference in absorption profiles between the suspensions and dry powders where AZD5423 had the poorest wettability followed by FP and FF. The IPL model in combination with an in silico model is a useful tool for investigating pulmonary dissolution and improving understanding of dissolution-related parameters for poorly soluble inhaled compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.