Abstract

Mechanical characteristics and gas exchange inefficiencies of the lungs contribute to increased work of ventilation in chronic obstructive pulmonary disease (COPD) at rest and exercise, and the energy cost of ventilation is increased in COPD at any external work level. Assuming typical ventilatory variables and respiratory characteristics, we estimated the relative contributions of inspiratory and expiratory resistance, dynamic elastance, intrinsic positive end-expiratory pressure, and gas exchange inefficiency to the work of breathing, finding that the last of these is likely to be of major importance. Dynamic hyperinflation can be seen as both an impediment to inspiratory muscle function and an essential component of adaptation to severe obstruction. Extrinsic restriction, in which the chest wall fails to achieve and maintain abnormally high lung volumes in COPD, can limit ventilatory function and contribute to disability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.